
API Documentation

BLYOTT PLATFORM

API Documentation

API Documentation

THIS ONBOARDING DOCUMENT CONTAINS1.
 AUTHENTICATION AND AUTHORIZATION 1

1.1. Login (POST /login) ... 1

1.2. Refresh token (POST /getCredentialsWithRefreshToken) 2

1.3. Forgot Password (POST user/{userName}/forgotPassword) 2

1.4. Confirm Forgot Password (POST /user/confirmForgotPassword) 3

2. TAG SPECIFIC OPERATIONS: .. 4

2.1. Create Tag (POST /tag) .. 4

2.2. Get Tag Details (GET /tag/{TagID}) .. 5

2.3. Edit Tag (PUT /tag) ... 6

2.4. Delete Tag (DELETE /tag/{TagID}) ... 7

2.5. Search Tags (POST /tagsAurora) ... 8

2.6. List Unassigned Tags (GET /allUnassignedTags) ..10

3. ASSET SPECIFIC OPERATIONS: ..11

3.1. Create Asset (POST /asset) ...11

3.2. Get Asset Details (GET /assetDetails/{AssetID}) ..12

3.3. Edit Asset (PUT /asset) ...13

3.4. Delete Asset (DELETE /asset/{AssetId}) ...14

3.5. Search Assets (POST /assets) ..15

3.6. List Unassigned Assets (GET /allUnassignedAssets) ...17

3.7. Get Asset History (POST /getAssetHistory) ..18

4. LOCATION SPECIFIC OPERATIONS: ..19

4.1. Create Location (POST /location) ...19

API Documentation

4.2. Get Location Details (GET /location/{LocationID}) ...21

4.3. Edit Location (PUT /location) ...22

4.4. Delete Location (DELETE /location/{LocationId}) ...24

4.5. Search Locations (POST /locationsAurora) ..25

4.6. List all Locations (GET /listAllLocations) ..27

5. LOCATOR SPECIFIC OPERATIONS: ...28

5.1. Create Locator (POST /locators) ...28

5.2. Edit Locators (PUT /locator) ...31

5.3. Delete Locator (DELETE /locator/{LocatorId}) ...33

5.4. Search Locators (POST /locatorsAurora) ...34

6. ACCESS LEVEL SPECIFIC OPERATIONS: ..36

6.1. Create Access Level (POST /accessLevel) ..36

6.2. Get Access Level Details (GET /accessLevel/{accessLevelID})37

6.3. Edit Access Level (POST /accessLevel/{AccessLevelID})38

6.4. Delete Access Level (DELETE /accessLevel/{AccessLevelID})39

6.5. Search Access Levels (POST /accessLevels) ..40

6.6. List all Access Levels (GET /allAccessLevels) ...41

7. ASSET TYPES SPECIFIC OPERATIONS: ...42

7.1. Create ASSET TYPE (POST /assetType) ..42

7.2. Get Asset Types Details (GET /assetType/{AssetTypeID})43

7.3. Edit Asset Type (PUT /assetType) ..44

7.4. Delete Asset Type (DELETE /assetType/{AssetTypeID})45

7.5. Search Asset Types (POST /assetTypes) ...46

7.6. List all Asset Types (GET /allAssetTypes) ..48

8. ZONES SPECIFIC OPERATIONS: ...49

API Documentation

8.1. Create ZONE (POST /zone) ..49

8.2. Get Zone Details (GET /zone/{ZoneID}) ...50

8.3. Edit Zone (PUT /zone) ...51

8.4. Delete Zone (DELETE /zone/{ZoneID}) ..52

8.5. Search Zones (POST /zones) ...53

8.6. List all Zones (GET /allZones) ..55

9. USER SPECIFIC OPERATIONS: ...56

9.1. Create User (POST /user) ..56

9.2. Get User Details (GET /user/{UserID}) ...57

9.3. Edit User (PUT /user) ..58

9.4. Delete User (DELETE /user/{UserID}) ..59

9.5. Search Users (POST /users) ...60

9.6. Resend Invite (POST /user/{UserID}/resendInvitation) ..62

10. LAYOUT BUILDER OPERATIONS:...63

10.1. Create dynamic property (POST /layoutBuilder/{entityName})63

10.2. Get dynamic property (GET /layoutBuilder/{entityName})64

10.3. Edit dynamic property (PUT /layoutBuilder/{entityName})65

10.4. Archive dynamic property (PUT /layoutBuilder/{entityName}/archive)66

10.5. Restore dynamic property (PUT /layoutBuilder/{entityName}/restore)67

10.6. Delete dynamic property (PUT /layoutBuilder/{entityName})68

11. ADDITIONAL INFORMATION: ...69

11.1. List of Tag Hardware Models (GET /hardware/0) ..69

11.2. List of Locator Hardware Models (GET /hardware/1) ...69

11.3. Activity Values ...69

12. COMMON USAGE SCENARIOS: ..70

API Documentation

12.1. Link Tag scenarios: ..70

12.2. Unlink Tag scenarios: ..71

12.3. View Assets’s Location ...71

13. FINGERPRINTING: ...72

13.1. Start Fingerprinting (POST /startFingerprinting) ...72

13.2. End Fingerprinting (POST /endFingerprinting) ..72

13.3. Create Fingerprint (POST /fingerprint) ...73

13.4. Status of Fingerprinting Tags (GET /fingerprintings) ...74

13.5. List of Fingerprinting Sessions Per Location (GET/fingerprintings/{LocationId}) ..75

13.6. Delete Fingerprintings from Location (POST /deleteFingerprintings)76

14. WORKFLOW SPECIFIC OPERATIONS: ..77

14.1. Create Workflow (POST /addWorkflow) ...77

14.2. Get Workflow Details (GET /workflow/{WorkflowID})79

14.3. Edit Workflow (PUT /editWorkflow) ...80

14.4. Search Workflow (POST /workflows) ...82

15. USER PROFILE SPECIFIC OPERATIONS: ..84

15.1. Create User Profile (POST /userProfile) ..84

15.2. Get User Profile (GET /userProfile) ..85

15.3. Edit User Profile (PUT /userProfile) ...86

15.4. Delete User Profile (DELETE /userProfile) ..87

API Documentation

 1

1. AUTHENTICATION AND AUTHORIZATION

Authentication is performed via Login API call (see Login details) through which access
credentials (provided by the Blyott) are exchanged for an Access Token and Refresh Token.
Provided Access Token needs to be present in all subsequent HTTP API calls as a HTTP
header named token. Access Token obtained is a JWT token which when decoded has a role
property indicating either User or Administrator role alongside its expiration time.

1.1. LOGIN (POST /login)

Credentials are exchanged for an Access Token by doing a Post request against /login
endpoint. Response will contain the AccessToken and RefreshToken. AccessToken should
then be provided in all subsequent API calls as a HTTP header “token”. Further curl
examples indicate the presence of a token with {token}.

Curl Example:

Curl

'https://api.blyott.com/login' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'content-type: application/json' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/login' \

-H 'accept-language: en-US,en;q=0.9' \

--data-binary '{"username":"username","password":"password"}' \

API Documentation

 2

1.2. REFRESH TOKEN (POST /getCredentialsWithRefreshToken)

Refresh token is used to get a new access token.

Curl Example:

Curl

'https://api.blyott.com/getCredentialsWithRefreshToken' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token}' \

-H 'content-type: application/json' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/' \

-H 'accept-language: en-US,en;q=0.9' \

--data-binary '{"username":"","refreshToken":"{refreshToken}"}' \

1.3. FORGOT PASSWORD (POST user/{userName}/forgotPassword)

If the user exists, reset password code with a link will be sent to the user's email.

Curl Example:

Curl

'https://api.blyott.com/user/test/forgotPassword' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'content-type: application/json' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/' \

-H 'accept-language: en-US,en;q=0.9' \

--data-binary '{}' \

API Documentation

 3

1.4. CONFIRM FORGOT PASSWORD (POST /user/confirmForgotPassword)

When the user requests the password reset, a new password needs to be confirmed with
the confirmation code which is sent to the user's email. Confirmation is done by issuing a
POST request to the platform against the /user/confirmForgotPassword endpoint with of
JSON payload consisting of following parameters:

1. Username - username of user which requests new password.
2. NewPassword - new password.
3. Code - code received by the email after user called Forgot Password.

Curl Example:

Curl

'https://api.blyott.com/user/confirmForgotPassword' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'content-type: application/json' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/' \

-H 'accept-language: en-US,en;q=0.9' \

--data-binary '{"Username":"test","NewPassword":"newPassword","Code":"111111"}' \

API Documentation

 4

2. TAG SPECIFIC OPERATIONS:

2.1. CREATE TAG (POST /tag)

Tag is created by issuing a POST request to the platform against the /tag endpoint with a
body of JSON payload consisting of at least the following parameters:

1. TagId - BLE MAC address of the Tag
2. NFCId - Tag’s NFC identifier, usually the same as BLE MAC
3. TagType:

a. 1 - Mobile Tags assigned to assets expected to move.
b. 2 - Fixed Tags assigned to assets not expected to move.
c. 3 - Machine Learning tag

4. FixedLocation - only applicable if TagType is 2, then the value should be the
set to the internal Id of the Location (see Locations) otherwise null.
5. TagHardwareId - Tag’s Manufacturer and model information, should be set to
Id of the HardwareModel (see Hardware)
6. AssetId - Asset to which the Tag is linked to, can be null if the Tag is
unassigned. Id should be of an unassigned Asset (see Unassigned Assets)
7. TempCalibrationOffset – Calibration offset for the temperature sensor
8. Dynamic properties - any custom dynamic property added through Layout
Builder.

Curl example:

Curl

'https://api.blyott.com/tag' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token}' \

-H 'content-type: application/json' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/admin-panel/tags/new' \

-H 'accept-language: en-US,en;q=0.9' \

--data-binary

'{"TagId":"123456ABCDEF","NFCId":"123456ABCDEF","TagType":2,"FixedLocationId":285,"

Tag HardwareId":1,"AssetId":null,

"TempCalibrationOffset":2,"CustomFields":[{"Id":22,"Value":"123"}]}' \

API Documentation

 5

2.2. GET TAG DETAILS (GET /tag/{TagID})

Tag details can be easily retrieved by issuing a GET request against the /tag/{TagId}
endpoint where the TagId is Tag’s MAC address identifier.

Curl example:

Curl

'https://api.blyott.com/tag/0CF3EEB88D9B' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token}' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/admin-panel/tags' \

-H 'accept-language: en-US,en;q=0.9' \

API Documentation

 6

2.3. EDIT TAG (PUT /tag)

Tag properties can be edited by issuing a PUT request against the /tag endpoint with the
body consisting of with a body of JSON payload consisting of at least the following
parameters:

1. TagId - BLE MAC address of the Tag
2. NFCId - Tag’s NFC identifier, usually the same as BLE MAC
3. TagType:
a. 1 - Mobile Tags assigned to assets expected to move.
b. 2 - Fixed Tags assigned to assets not expected to move.
4. FixedLocation - only applicable if TagType is 2, then the value should be the
set to the internal Id of the Location (see Locations) otherwise null.
5. TagHardwareId - Tag’s Manufacturer and model information, should be set to
Id of the HardwareModel (see Hardware).
6. AssetId - Asset to which the Tag is linked to, can be null if the Tag is
unassigned. Id should be of an unassigned Asset (see Unassigned Assets).
7. TempCalibrationOffset – Calibration offset for the temperature sensor
8. Dynamic properties - any custom dynamic property added through Layout
Builder.

Curl example:

Curl

'https://api.blyott.com/tag' \

-X 'PUT' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token}' \

-H 'content-type: application/json' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/admin-panel/tags/123456ABCDEF/edit' \ -H 'accept-

language: en-US,en;q=0.9' \

--data-binary

'{"TagId":"123456ABCDEF","NFCId":"123456ABCDEF","TagType":2,"FixedLocationId":285,"

Tag HardwareId":1,"AssetId":null, "TempCalibrationOffset":-

1,"CustomFields":[{"Id":22,"Value":"123"}]}' \

API Documentation

 7

2.4. DELETE TAG (DELETE /tag/{TagID})

Tag can be easily removed from the system by issuing a DELETE request against the
/tag/{TagId} endpoint where the TagId is Tag’s MAC address identifier.

Curl example:

Curl

'https://api.blyott.com/tag/123456ABCDEF' \

-X 'DELETE' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token}' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/admin-panel/tags/123456ABCDEF/edit' \

-H 'accept-language: en-US,en;q=0.9' \

API Documentation

 8

2.5. SEARCH TAGS (POST /tagsAurora)

To search for specific Tag a post request to the /tagsAurora or /tags endpoint should be
issued with following Filtering properties in the JSON body payload:

1. Page - Since results are paginated by 20 items, the page of the required result set
should be provided. If field not provided all results will be returned 2. PageSize - If there
are more than 20 results, specify this filter value.

a. if not specified, number of items per page is 20.
b. if number is less than 20, it is interpreted as 20.
c. if number is greater than 1000, it is interpreted as 1000.

3. GlobalSearch - Searches the content in almost all grid columns.
4. SortBy - By which Tag property should the results be sorted.
5. SortOrder - Sorting direction can be:

a. Asc - Ascending order
b. Desc - Descending order

6. Filters - Arrays of applied filter, contains the list of following elements:
a. FilterBy - Property by which to filter on.
b. FilterContent - Array of values to search the value requested property
against based on the contains type of logic.

Possible Filter properties:

7. TagId - filter by Tag MAC Address.
8. NFCId - filter by Tag NFC Identifier.
9. TagType - filter by Tag Type.
10. FixedLocationName - filter by Location Name Asset should be located.
11. HardwareModel - filter by Tag’s Hardware Model value.
12. AssetName - filter by Assigned Asset’s Name.
13. Activity - filter by Activity (see Activity).
14. Dynamic properties - filter by any custom dynamic property.

Take note that alongside the standard Tag properties, this endpoint will return Rssi and
LastSeen properties as well.

API Documentation

 9

Curl Example:

Curl

'https://api.blyott.com/tagsAurora' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token}' \

-H 'content-type: application/json' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/admin-panel/tags' \

-H 'accept-language: en-US,en;q=0.9' \

--data-binary

'{"Page":1,"GlobalSearch":"0CF","SortBy":"TagId","SortOrder":"Asc","Filters":[{"FilterBy":"T

agId","

FilterContent":["MAC"]},{"FilterBy":"NFCId","FilterContent":["NFC"]},{"FilterBy":"TagType",

"Filter C

ontent":[2]},{"FilterBy":"FixedLocationName","FilterContent":["FixedLoc"]},{"FilterBy":"Har

dware

Model","FilterContent":["Hard"]},{"FilterBy":"AssetName","FilterContent":["assetAssigend"]

},{"Fi lt erBy":"Activity","FilterContent":["1"]}]}'' \

API Documentation

 10

2.6. LIST UNASSIGNED TAGS (GET /allUnassignedTags)

List of all unassigned Tag MAC addresses i.e., Tags not linked to an Asset can be retrieved
by issuing a GET request against the /allUnassignedTags endpoint.

Curl Example:

Curl

'https://api.blyott.com/allUnassignedTags' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token}' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/admin-panel/assets/new' \

-H 'accept-language: en-US,en;q=0.9' \

API Documentation

 11

3. ASSET SPECIFIC OPERATIONS:

3.1. CREATE ASSET (POST /asset)

Asset is created by issuing a POST request to the platform against the /asset endpoint with
a body of JSON payload consisting of at least the following parameters:

1. AssetName - Name of the Asset.
2. AssetCode - Asset’s unique serial identifier.
3. TagId - Tag to which the Asset is linked to, can be null if the Asset is
unassigned. Id should be of an unassigned Asset (see Unassigned Tags).
4. AllUsers - If true, Asset is visible to all users, i.e., to users with any access level
assigned.
5. AccessLevels - If AllUsers parameter is false, this one needs to be specified and
it should exist in AccessLevel list (see Access Levels/Permissions).
6. Workflows – Array of Workflows identifiers that will be linked to this Asset.
(optional field).
7. CustomFields - any custom dynamic property added through Layout Builder
(optional field).
8. AssetTypes - Array of Asset Types identifiers that will be linked to this Asset. It
can be blank or multiple types [1,2] (optional field).
9. Zones - Array of Asset Zones identifiers that will be linked to this Asset. It can
be blank or multiple types [1,2] ((optional field).

Curl Example:

Curl

'https://api.blyott.com/asset' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token}' \

-H 'content-type: application/json' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/admin-panel/assets/new' \

-H 'accept-language: en-US,en;q=0.9' \

--data-binary '{"AssetName":"Example asset name", "AssetCode":"00001", "Zones": [],

"AssetTypes": [],"TagId":null,"AllUsers":false,"AccessLevels":[29,8],”Workflows”:[13, 24,

43] ,"CustomFields":[{"Id":1

4,"Value":"123"},{"Id":15,"Value":"456"}]}' \

API Documentation

 12

3.2. GET ASSET DETAILS (GET /assetDetails/{AssetID})

Asset details can be easily retrieved by issuing a GET request against the

/assetDetails/{AssetID} endpoint where the AssetID is AssetCode.

Curl Example:

Curl

'https://api.blyott.com/assetDetails/test300' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token}' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/admin-panel/assets' \

-H 'accept-language: en-US,en;q=0.9' \

API Documentation

 13

3.3. EDIT ASSET (PUT /asset)

Asset properties can be edited by issuing a PUT request against the /asset endpoint with the
body consisting of with a body of JSON payload consisting of at least the following
parameters:

1. AssetId - Unique internal SHP Asset identifier.
2. AssetName - Name of the Asset.
3. AssetCode - Asset’s unique serial identifier.
4. TagId - Tag to which the Asset is linked to, can be null if the Asset is
unassigned. Id should be of an unassigned Asset (see Unassigned Tags).
5. AllUsers - If true, Asset is visible to all users, i.e., to users with any access level
assigned.
6. AccessLevels - If AllUsers parameter is false, this one needs to be specified and
it should exist in AccessLevel list (see Access Levels/Permissions).
7. Workflows – Array of Workflows identifiers that will be linked to this Asset.
Take note that this will override any existing Workflows linked to this Asset if their
identifiers are not included in the array (optional field).
8. CustomFields - any custom dynamic property added through Layout Builder
(optional field).
9. AssetTypes - Array of Asset Types identifiers that will be linked to this Asset. It
can be blank or multiple types [1,2] (optional field).
10. Zones - Array of Asset Zones identifiers that will be linked to this Asset. It can
be blank or multiple types [1,2] ((optional field).

Curl Example:

Curl

'https://api.blyott.com/asset' \

-X 'PUT' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token}' \

-H 'content-type: application/json' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/admin-panel/assets/test300/edit' \

-H 'accept-language: en-US,en;q=0.9' \

--data-binary '{"AssetId":4368,"AssetName":"asset300","AssetCode":"test300","Zones": [],

"AssetTypes": [],"TagId":"test300","AllUsers":t rue,"AccessLevels":null,”Workflows”: [2, 7,

14],"CustomFields":[{"Id":14,"Value":"note"},{"Id":15,"Value":"desc"}]}' \

API Documentation

 14

3.4. DELETE ASSET (DELETE /asset/{AssetID})

Asset can be easily removed from the system by issuing a DELETE request against the
/asset/{AssetId} endpoint where the AssetId is Asset’s Blyott internal identifier.

Curl example:

Curl

'https://api.blyott.com/asset/3762' \

-X 'DELETE' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token}'' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/admin-panel/assets' \

-H 'accept-language: en-US,en;q=0.9' \

API Documentation

 15

3.5. SEARCH ASSETS (POST /assets)

To search for specific Asset a POST request to the /assets endpoint should be issued with
following Filtering properties in the JSON body payload:

1. Page - Since results are paginated by 20 items, the page of the required
result set should be provided. If the field is not provided all results will be
returned.
2. SortBy - By which Asset property should the results be sorted.
3. PageSize - If there are more than 20 results, specify this filter value.

a. if not specified, number of items per page is 20.
b. if number is less than 20, it is interpreted as 20.
c. if number is greater than 1000, it is interpreted as 1000.

4. GlobalSearch - Searches the content in almost all grid columns.
5. SortOrder - Sorting direction can be:

a. Asc - Ascending order.
b. Desc - Descending order.

6. Filters - Arrays of applied filter, contains the list of following elements:
a. FilterBy - Property by which to filter on.
b. FilterContent - Array of values to search the value requested
property against based on the contains type of logic.

Possible Filter properties:

1. AssetName - filter by Asset Name.
2. AssetCode - fiter by Asset Code.
3. AccessLevel - filter by Access Level (see Access Levels/Permissions).
4. TagId - filter by Mac address of assigned Tag.
5. Activity - filter by Activity (see Activity).
6. LocationName - filter by Location Name where Asset is seen (only if assigned
to Tag).
7. LocationCode - filter by Location Code where Asset is seen (only if assigned to
Tag).
8. FixedLocationName - filter by Location Name where Asset should be located.
9. Dynamic properties - filter by any custom dynamic property.
10. Zones - filter by Zones
11. AssetTypes – filter by Asset Types

API Documentation

 16

Take note that alongside the standard Asset properties, this endpoint will return Rssi and
TimeLastSeen properties as well.

Curl Example:

Curl

'https://api.blyott.com/assets' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token}' \

-H 'content-type: application/json' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/admin-panel/assets' \

-H 'accept-language: en-US,en;q=0.9' \

--data-binary

'{"Page":1,"GlobalSearch":"","SortBy":"AssetName","SortOrder":"Asc","Filters":[{"FilterBy":"

Asset

Name","FilterContent":["name"]},{"FilterBy":"AssetCode","FilterContent":["code"]},{"FilterB

y": "Ass etTypes", "FilterContent": ["TYPE_01"] },{"FilterBy": "Zones", "FilterContent": [

"ZONE_01"] },{"Fil

terBy":"TagId","FilterContent":["assigned"]},{"FilterBy":"Activity","FilterContent":["2"]},{"Fi

lterBy":"L

ocationName","FilterContent":["locname"]},{"FilterBy":"LocationCode","FilterContent":["loc

Code"

]},{"Filter By":"FixedLocationName","FilterContent":["FixedLoc"]}]}' \

API Documentation

 17

3.6. LIST UNASSIGNED ASSETS (GET /allUnassignedAssets)

List of all unassigned Assets i.e., Assets not linked to an Tag can be retrieved by issuing a
GET request against the /allUnassignedAssets endpoint.

Curl Example:

Curl

'https://api.blyott.com/allUnassignedTags' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token}' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/admin-panel/assets/new' \

-H 'accept-language: en-US,en;q=0.9' \

API Documentation

 18

3.7. GET ASSET HISTORY (POST /getAssetHistory)

To retrieve specific Assets historical locations on a given time range a POST request to the

/getAssetHistory endpoint should be issued with following request properties in the JSON
body payload:

1. AssetIds - Array of Assets to be searched for. Assets are represented by their
internal Asset identifiers (See Assets).
2. From - Date and time representing the beginning of a search range.
3. To - Date and time representing the end of a search range.

For each of the Asset provided an array of HistoryRecord will be provided with the times
representing:

1. LocationId - Location Asset was present for this record, represented by
Location internal identifier (See Location).
2. StartTime - Date and time representing the start of Assets’ occurrence on this
Location.
3. EndTime - Date and time representing the end of Assets’ occurrence on this
Location.

Curl Example:

Curl

'https://api.blyott.com/getAssetHistory \ -H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token}' \

-H 'content-type: application/json' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/admin-panel/assets/new' \

-H 'accept-language: en-US,en;q=0.9' \

--data-binary '{ "AssetIds":

[1,2,3,4,5,6],

"From": "2021-01-1T00:00:00.000Z",

"To": "2021-01-2T00:00:00.000Z"}' \

API Documentation

 19

4. LOCATION SPECIFIC OPERATIONS:

4.1. CREATE LOCATION (POST /location)

Location is created by issuing a POST request to the platform against the /location endpoint
with a body of JSON payload consisting of at least the following parameters:

1. LocationName - Name of the Location.
2. LocationCode - Unique Location identifier such as room number etc.
3. LocationType:

a. 0 – “In Use” - Active Location meaning assets are utilized on this
Location.
b. 1 – “Available” - Passive Location meaning Storage, assets are not
utilized here.
c. 2 – “Maintenance” – Inactive Location that is under maintenance,
meaning devices on this location are being configured.

4. Dynamic properties - any custom dynamic property added through Layout
Builder.
5. SurfaceArea – Custom field to mark the surface area on the Location (optional
field)..
6. Site – Custom field to mark the site on the Location (optional field)..
7. Building – Custom field to mark the building on the Location (optional field)..
8. Wing – Custom field to mark the building wing on the Location (optional field)..
9. Zones - Array of Asset Zones identifiers that will be linked to this Location. It
can be blank or multiple types [1,2] (optional field).

API Documentation

 20

Curl Example:

Curl

'https://api.blyott.com/location' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token}' \

-H 'content-type: application/json' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/admin-panel/locations/new' \

-H 'accept-language: en-US,en;q=0.9' \

--data-binary

'{"LocationName":"Test","LocationCode":"Test","LocationType":0,"SurfaceArea": "surface",

" Site": "site", "Building": "building", "Wing": "wing", "Floor": "floor", "Zones":

[2],"CustomFields" :[{"Id":1,"Value ":""}]}' \

API Documentation

 21

4.2. GET LOCATION DETAILS (GET /location/{LocationID})

Location details can be easily retrieved by issuing a GET request against the
/location/{LocationID} endpoint where the LocationID is Location’s Blyott internal identifier.

Curl Example:

Curl

'https://api.blyott.com/location/3186' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token}'\

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/admin-panel/locations' \

-H 'accept-language: en-US,en;q=0.9' \

API Documentation

 22

4.3. EDIT LOCATION (PUT /location)

Location properties can be edited by issuing a PUT request against the /location endpoint
with the body consisting of with a body of JSON payload consisting of at least the following
parameters:

1. LocationId - Unique internal Blyott Location identifier.
2. LocationName - Name of the Location.
3. LocationCode - Unique Location identifier such as room number etc.
4. LocationType:

a. 0 – “In Use” - Active Location meaning assets are utilized on this
Location.
b. 1 – “Available” - Passive Location meaning Storage, assets are not
utilized here.
c. 2 – “Maintenance” – Inactive Location that is under maintenance,
meaning devices on this location are being configured.

5. Dynamic properties - any custom dynamic property added through Layout
Builder.
6. SurfaceArea – Custom field to mark the surface area on the Location (optional
field)..
7. Site – Custom field to mark the site on the Location (optional field)..
8. Building – Custom field to mark the building on the Location (optional field)..
9. Wing – Custom field to mark the building wing on the Location (optional field)..
10. Zones - Array of Asset Zones identifiers that will be linked to this Location. It
can be blank or multiple types [1,2] (optional field).

API Documentation

 23

Curl Example:

Curl

'https://api.blyott.com/location' \

-X 'PUT' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token}' \

-H 'content-type: application/json' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/admin-panel/locations/3186/edit' \

-H 'accept-language: en-US,en;q=0.9' \

--data-binary '{"LocationId":"3186","LocationName":"Ground floor -

North2","LocationCode":"TQN2","LocationType":0,"SurfaceArea": "surface", "Site": "site",

"Buildi ng": "building", "Wing": "wing", "Floor": "floor", "Zones":

[2],""CustomFields":[{"Id":1,"Value":"Room 12"}]}' \

API Documentation

 24

4.4. DELETE LOCATION (DELETE /location/{LocationID})

Location can be easily removed from the system by issuing a DELETE request against the

/location/{LocationId} endpoint where the LocationId is Location’s Blyott internal identifier.

Curl Example:

Curl

'https://api.blyott.com/location/27484' \

-X 'DELETE' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token}' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/admin-panel/locations' \

-H 'accept-language: en-US,en;q=0.9' \

API Documentation

 25

4.5. SEARCH LOCATIONS (POST /locationsAurora)

To search for specific Location a post request to the /locationsAurora endpoint should be
issued with following Filtering properties in the JSON body payload:

1. Page - Since results are paginated by 20 items, the page of the required
result set should be provided. If the field is not provided all results will be
returned.
2. SortBy - By which Asset property should the results be sorted.
3. PageSize - If there are more than 20 results, specify this filter value.

a. if not specified, number of items per page is 20.
b. if number is less than 20, it is interpreted as 20.
c. if number is greater than 1000, it is interpreted as 1000.

4. GlobalSearch - Searches the content in almost all grid columns.
5. SortOrder - Sorting direction can be:

a. Asc - Ascending order
b. Desc - Descending order

6. Filters - Arrays of applied filter, contains the list of following elements:
a. FilterBy - Property by which to filter on.
b. FilterContent - Array of values to search the value requested
property against based on the contains type of logic.

Possible Filter properties:

1. LocationName - Name of the Location.
2. LocationCode - Unique Location identifier such as room number etc.
3. LocationType:

a. 0 – “In Use” - Active Location meaning assets are utilized on this
Location.
b. 1 – “Available” - Passive Location meaning Storage, assets are not
utilized here.
c. 2 – “Maintenance” – Inactive Location that is under maintenance,
meaning devices on this location are being configured.

4. Dynamic properties - filter by any custom dynamic property.
5. SurfaceArea – filter by custom field to mark the surface area on the Location.
6. Site – filter by custom field to mark the site on the Location.
7. Building – filter by custom field to mark the building on the Location.
8. Wing – filter by custom field to mark the building wing on the Location.
9. Zones - filter by Zones

API Documentation

 26

Curl Example:

Curl

'https://api.blyott.com/locationsAurora' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token}' \

-H 'content-type: application/json' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/' \

-H 'accept-language: en-US,en;q=0.9' \

--data-binary

'{"Page":1,"PageSize":50,"GlobalSearch":"","SortBy":"LocationName","SortOrder":"Asc","Filt

ers"

:[[{"FilterBy":"LocationName","FilterContent":["name"]}, {"FilterBy": "SurfaceArea",

"FilterContent ": ["area"] },{"FilterBy": "Site", "FilterContent ": ["site"] },{ "FilterBy":

"building", "FilterContent ":

["building"]},{"FilterBy": "Wing", "FilterContent ": ["wing"] },{ "FilterBy": "Zones",

"FilterContent ":

["zone"]},"FilterBy":"LocationCode","FilterContent:["code"]},{"FilterBy":"LocationType","Filt

erCont ent":["0"]}]}' \

API Documentation

 27

4.6. LIST ALL LOCATIONS (GET /listAllLocations)

Issuing a GET request to /listAllLocations will retrieve a list of all existing Location values
and their associated entries that can be used to create/edit a Tag or a Locator.

Curl Example:

Curl

'https://api.blyott.com/listAllLocations' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token}' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/' \

-H 'accept-language: en-US,en;q=0.9' \

Take note, result will be less than “/locationsAurora”:

{

"LocationId": 57310,

"LocationName": "Test",

"LocationCode": "15",

"SurfaceArea": null,

"Site": null,

"Building": null,

"Wing": null,

"Floor": null

}

API Documentation

 28

5. LOCATOR SPECIFIC OPERATIONS:

5.1. CREATE LOCATOR (POST /locators)

Locator is created by issuing a POST request to the platform against the /locators endpoint
with a body of JSON payload consisting of at least the following parameters:

1. LocatorId - MAC address of the Locator device.
2. LocatorName - Name of the Locator device.
3. LocationId - Internal Blyott Location identifier (see Locations).
4. LocatorType - Type of Locator used, one of following:

a. 1 - Mobile Locator, Locator that is expected to change location.
b. 2 - Fixed Locator, Locator provided by Blyott that is fixed to a Location.
c. 3 - Wi-Fi Locator, Internal Wi-Fi Locators used by on-premises clients.

5. LocatorSerialNumber - Internal serial number of the Locator device, optional
and can be blank.
6. LocatorImsi - Imsi value of the Locator, optional if applicable needs to be
unique.
7. LocatorImei - Imei value of Locator, optional.
8. LocatorHardwareId - Locator’s Manufacturer and Model information, should
be set to Id of the Locator HardwareModel (see Hardware).
9. Dynamic properties - any custom dynamic property added through Layout
Builder.

Curl Example:

Curl

'https://api.blyott.com/locator' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token}' \

-H 'content-type: application/json' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/admin-panel/locators/new' \

-H 'accept-language: en-US,en;q=0.9' \

--data-binary

API Documentation

 29

'{"LocatorName":"Test","LocatorId":"Test","LocatorType":2,"LocationId":285,"LocatorHard

ware

Id":16,"LocatorSerialNumber":"Test","LocatorImsi":"Test","LocatorImei":"Test","CustomFiel

ds":[{ "Id":12,"Value":"1"}]}' \

API Documentation

 30

1 Get Locator Details (GET /locator/{LocatorID})

Location details can be easily retrieved by issuing a GET request against the

/location/{LocatorID} endpoint where the LocatorID is Locator’s Mac internal identifier.

Curl Example:

Curl

'https://api.blyott.com/locator/A4CF12152728' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token}'\

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/admin-panel/locator/A4CF12152728 \

-H 'accept-language: en-US,en;q=0.9' \

API Documentation

 31

5.2. EDIT LOCATORS (PUT /locator)

Locator is edited by issuing a PUT request to the platform against the /locators endpoint
with a body of JSON payload consisting of at least the following parameters:

1. LocatorId - MAC address of the Locator device.
2. LocatorName - Name of the Locator device.
3. LocationId - Internal Blyott Location identifier (see Locations).
4. LocatorType - Type of Locator used, one of following:

a. 1 - Mobile Locator, Locator that is expected to change location.
b. 2 - Fixed Locator, Locator provided by Blyott that is fixed to a Location.
c. 3 - Wi-Fi Locator, Internal Wi-Fi Locators used by on-premises clients.

5. LocatorSerialNumber - Internal serial number of the Locator device, optional
can be blank.
6. LocatorImsi - Imsi value of the Locator, optional if applicable needs to be
unique.
7. LocatorImei - Imei value of Locator, optional.
8. LocatorHardwareId - Locator’s Manufacturer and Model information, should
be set to Id of the Locator HardwareModel (see Hardware).
9. Dynamic properties - any custom dynamic property added through Layout
Builder.

Curl Example:

Curl

'https://api.blyott.com/locator' \

-X 'PUT' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token}' \

-H 'content-type: application/json' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/' \

-H 'accept-language: en-US,en;q=0.9' \

--data-binary '{"LocatorName":"Locator

API Documentation

 32

3","LocatorId":"A4CF12152728","LocatorType":2,"LocationId":3187,"LocatorHardwareId":1

6,"Lo

catorSerialNumber":"sfsfsfsf","LocatorImsi":"sfsfsdhedagsdfgs","LocatorImei":null,"Custom

Fie l ds":[{"Id":12,"Value":"sd"}]}' \

API Documentation

 33

5.3. DELETE LOCATOR (DELETE /locator/{LocatorID})

Locator can be easily removed from the system by issuing a DELETE request against the

/locator/{LocatorId} endpoint where the LocatorId is Locator’s Mac internal identifier.

Curl Example:

Curl

'https://api.blyott.com/locator/S21' \

-X 'DELETE' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token}' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/' \

-H 'accept-language: en-US,en;q=0.9' \

API Documentation

 34

5.4. SEARCH LOCATORS (POST /locatorsAurora)

To search for specific Locator a POST request to the /locatorsAurora endpoint should be
issued with following Filtering properties in the JSON body payload:

1. Page - Since results are paginated by 20 items, the page of the required result
set should be provided. If field is not provided all results will be returned.
2. SortBy - By which Locator property should the results be sorted.
3. PageSize - If there are more than 20 results, specify this filter value.

a. if not specified, number of items per page is 20.
b. if number is less than 20, it is interpreted as 20.
c. if number is greater than 1000, it is interpreted as 1000.

4. GlobalSearch - Searches the content in almost all grid columns.
5. SortOrder - Sorting direction can be:

a. Asc - Ascending order.
b. Desc - Descending order.

6. Filters - Arrays of applied filter, contains the list of following elements:
a. FilterBy - Property by which to filter on.
b. FilterContent - Array of values to search the value requested property
against based on the contains type of logic.

Possible Filter properties:

1. LocatorName - filter by name of the Locator.
2. LocationName - filter by name of the Location.
3. LocationCode - filter by unique Location identifier such as room number etc.
4. LocatorId - filter by MAC address of the Locator.
5. Activity - filter by Activity (see Activity).
6. LocatorSerialNumber - filter by Internal serial number of the Locator device.
7. LocatorImsi - filter by Locator Imsi values. 8. LocatorImei - filter by Locator Imei
values.

9. LocatorType - filter by Locator type values.
10. LocatorHardwareModel - filter by Locator’s Hardware Model value.
11. Dynamic properties - filter by any custom dynamic property.

API Documentation

 35

Curl Example:

Curl

'https://api.blyott.com/locatorsAurora' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token}' \

-H 'content-type: application/json' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/' \

-H 'accept-language: en-US,en;q=0.9' \

--data-binary

'{"Page":1,"PageSize":50,"GlobalSearch":"","SortBy":"LocatorName","SortOrder":"Asc","Filt

ers":[

{"FilterBy":"LocatorName","FilterContent":["name"]},{"FilterBy":"LocationName","FilterCont

ent":[

"locName"]},{"FilterBy":"LocationCode","FilterContent":["locCode"]},{"FilterBy":"LocatorId"

,"Filter

Content":["MAC"]},{"FilterBy":"Activity","FilterContent":["1"]},{"FilterBy":"LocatorSerialNu

mber","Fi

lterContent":["Serial"]},{"FilterBy":"LocatorImsi","FilterContent":["imsi"]},{"FilterBy":"Locat

orHard wareModel","FilterContent":["model"]}]}' \

API Documentation

 36

6. ACCESS LEVEL SPECIFIC OPERATIONS:

6.1. CREATE ACCESS LEVEL (POST /accessLevel)

Access Level is created by issuing a POST request to the platform against the /accessLevel
endpoint with a body of JSON payload consisting of at least the following parameters:

1. AccessLevelName - name of the Access Level.
2. AccessLevelDescription - additional description of the Access Level, optional.

Curl Example:

Curl

'https://api.blyott.com/accessLevel' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token}' \

-H 'content-type: application/json' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/' \

-H 'accept-language: en-US,en;q=0.9' \

--data-binary '{"AccessLevelName":"Dermatology","AccessLevelDescription":"DERM"}' \

API Documentation

 37

6.2. GET ACCESS LEVEL DETAILS (GET /accessLevel/{AccessLevelID})

Access Level details can be easily retrieved by issuing a GET request against the

/accessLevel/{accessLevelID} endpoint where the AccessLevelID is an internal identifier.

Curl Example:

Curl

'https://api.blyott.com/accessLevel/36' \ -H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token}' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/' \

-H 'accept-language: en-US,en;q=0.9' \

API Documentation

 38

6.3. EDIT ACCESS LEVEL (POST /accessLevel/{AccessLevelID})

Access Level is edited by issuing a PUT request to the platform against the /accessLevel
endpoint with a body of JSON payload consisting of at least the following parameters:

1. AccessLevelId - unique internal Blyott Access Level identifier.
2. AccessLevelName - name of the Access Level.
3. AccessLevelDescription - additional description of the Access Level,
optional.

Curl Example:

Curl

'https://api.blyott.com/accessLevel' \

-X 'PUT' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token}' \

-H 'content-type: application/json' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \ -H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/' \

-H 'accept-language: en-US,en;q=0.9' \

--data-binary

'{"AccessLevelId":"36","AccessLevelName":"Cardiology","AccessLevelDescription":"CARD"}'

\

API Documentation

 39

6.4. DELETE ACCESS LEVEL (DELETE /accessLevel/{AccessLevelID})

Access Level can be easily removed from the system by issuing a DELETE request against
the /accessLevel/{AccessLevelId} endpoint where the Access Level ID is Blyott internal
identifier.

Curl Example:

Curl

'https://api.blyott.com/accessLevel/36' \

-X 'DELETE' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token}' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/' \

-H 'accept-language: en-US,en;q=0.9' \

API Documentation

 40

6.5. SEARCH ACCESS LEVELS (POST /accessLevels)

To search for specific Access Level a POST request to the /accessLevels endpoint should be
issued with following Filtering properties in the JSON body payload:

1. Page - Since results are paginated by 20 items, the page of the required result
set should be provided. If field is not provided all results will be returned.
2. SortBy - By which Locator property should the results be sorted.
3. PageSize - If there are more than 20 results, specify this filter value.

a. if not specified, number of items per page is 20.
b. if number is less than 20, it is interpreted as 20.
c. if number is greater than 1000, it is interpreted as 1000.

4. GlobalSearch - Searches the content in almost all grid columns.
5. SortOrder - Sorting direction can be:

a. Asc - Ascending order.
b. Desc - Descending order.

6. Filters - Arrays of applied filter, contains the list of following elements:
a. FilterBy - Property by which to filter on.
b. FilterContent - Array of values to search the value requested property
against based on the contains type of logic.

Possible Filter properties:

1. AccessLevelName - filter by name of the Access Level.
2. AccessLevelDescription - filter by additional description of the Access
Level.

Curl Example:

Curl

'https://api.blyott.com/accessLevels' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token}' \

-H 'content-type: application/json' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

API Documentation

 41

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/' \

-H 'accept-language: en-US,en;q=0.9' \

--data-binary

'{"Page":1,"PageSize":50,"GlobalSearch":"","SortBy":"AccessLevelName","SortOrder":"Asc",

"Filt ers":[{"FilterBy":"AccessLevelName","FilterName":"Access

Levels","FilterContent":["DERM"]},{"FilterBy":"AccessLevelDescription","FilterName":"Descri

ptio n","FilterContent":["D"]}]}' \

6.6. LIST ALL ACCESS LEVELS (GET /allAccessLevels)

Issuing a GET request to /allAccessLevels will retrieve a list of all existing Access Level
values and their associated entries that can be used to create/edit a User or an Asset.

Curl Example:

Curl

'https://api.blyott.com/allAccessLevels' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token}' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/' \

-H 'accept-language: en-US,en;q=0.9' \

API Documentation

 42

7. ASSET TYPES SPECIFIC OPERATIONS:

7.1. CREATE ASSET TYPE (POST /assetType)

Asset Type is created by issuing a POST request to the platform against the /assetType
endpoint with a body of JSON payload consisting of at least the following parameters:

1. Name - name of the asset type.

Curl Example:

Curl

‘https://api.blyott.com/assetType' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token}' \

-H 'content-type: application/json' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/' \

-H 'accept-language: en-US,en;q=0.9' \

--data-raw '{"Name":"test"}' \

https://portal.blyott.com/
https://portal.blyott.com/

API Documentation

 43

7.2. GET ASSET TYPES DETAILS (GET /assetType/{AssetTYpeID})

Asset Type details can be easily retrieved by issuing a GET request against the

/assetType/{AssetTypeID} endpoint where the AssetTypeID is an internal identifier.

Curl Example:

Curl

'https://api.blyott.com/assetType/36' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token}' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/' \

-H 'accept-language: en-US,en;q=0.9' \

API Documentation

 44

7.3. EDIT ASSET TYPE (PUT /assetType)

Access Level is edited by issuing a PUT request to the platform against the /assetType
endpoint with a body of JSON payload consisting of at least the following parameters:

1. Id - unique internal Blyott asset type identifier.
2. Name - name of the asset type.

Curl Example:

Curl

'https://api.blyott.com/assetType' \

-X 'PUT' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token}' \

-H 'content-type: application/json' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \ -H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/' \

-H 'accept-language: en-US,en;q=0.9' \

--data-binary '{"Id":"36","Name":"GandalfHat"}' \

API Documentation

 45

7.4. DELETE ASSET TYPE (DELETE /assetType/{AssetTypeID})

Asset Type can be easily removed from the system by issuing a DELETE request against the
/assetType/{AssetTypeId} endpoint where the Asset Type ID is Blyott internal identifier.

Curl Example:

Curl

'https://api.blyott.com/assetType/36' \

-X 'DELETE' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token}' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/' \

-H 'accept-language: en-US,en;q=0.9' \

API Documentation

 46

7.5. SEARCH ASSET TYPES (POST /assetTypes)

To search for specific Asset Types a POST request to the /assetTypes endpoint should be
issued with following Filtering properties in the JSON body payload:

7. Page - Since results are paginated by 20 items, the page of the required result
set should be provided. If field is not provided all results will be returned.
8. SortBy - By which Locator property should the results be sorted.
9. PageSize - If there are more than 20 results, specify this filter value.

a. if not specified, number of items per page is 20.
b. if number is less than 20, it is interpreted as 20.
c. if number is greater than 1000, it is interpreted as 1000.

10. GlobalSearch - Searches the content in almost all grid columns.
11. SortOrder - Sorting direction can be:

a. Asc - Ascending order.
b. Desc - Descending order.

12. Filters - Arrays of applied filter, contains the list of following elements:
a. FilterBy - Property by which to filter on.
b. FilterContent - Array of values to search the value requested property
against based on the contains type of logic.

Possible Filter properties:

1. Name - filter by name of the Asset Type.

Curl Example:

Curl

'https://api.blyott.com/assetTypes' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token}' \

-H 'content-type: application/json' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/' \

-H 'accept-language: en-US,en;q=0.9' \

https://portal.blyott.com/
https://portal.blyott.com/

API Documentation

 47

--data-binary

'{"Page":1,"PageSize":50,"GlobalSearch":"","SortBy":"Name","SortOrder":"Asc","Filters":[{"

FilterBy":

"Name","FilterName":"Asset Type","FilterContent":["DERM"]}]}'

API Documentation

 48

7.6. LIST ALL ASSET TYPES (GET /allAssetTypes)

Issuing a GET request to /allAssetTypes will retrieve a list of all existing Asset Type values
and their associated entries that can be used to create/edit a Asset.

Curl Example:

Curl

'https://api.blyott.com/allAssetTypes' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token}' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/' \

-H 'accept-language: en-US,en;q=0.9' \

API Documentation

 49

8. ZONES SPECIFIC OPERATIONS:

8.1. CREATE ZONE (POST /zone)

Zone is created by issuing a POST request to the platform against the /zone endpoint with a
body of JSON payload consisting of at least the following parameters:

2. Name - name of the zone.

Curl Example:

Curl

'https://api.blyott.com/zone' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token}' \

-H 'content-type: application/json' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/' \

-H 'accept-language: en-US,en;q=0.9' \

--data-raw '{"Name":"test"}' \

https://portal.blyott.com/
https://portal.blyott.com/

API Documentation

 50

8.2. GET ZONE DETAILS (GET /zone/{ZoneID})

Zone details can be easily retrieved by issuing a GET request against the

/zone/{ZoneID} endpoint where the ZoneID is an internal identifier.

Curl Example:

Curl

'https://api.blyott.com/zone/2' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token}' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/' \

-H 'accept-language: en-US,en;q=0.9' \

API Documentation

 51

8.3. EDIT ZONE (PUT /zone)

Zone is edited by issuing a PUT request to the platform against the /zone endpoint with a
body of JSON payload consisting of at least the following parameters:

3. Id - unique internal Blyott zone identifier.
4. Name - name of the zone.

Curl Example:

Curl

'https://api.blyott.com/zone' \

-X 'PUT' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token}' \

-H 'content-type: application/json' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \ -H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/' \

-H 'accept-language: en-US,en;q=0.9' \

--data-binary '{"Id":"36","Name":"GandalfHat"}' \

API Documentation

 52

8.4. DELETE ZONE (DELETE /zone/{ZoneID})

Asset Type can be easily removed from the system by issuing a DELETE request against the
/zone/{ZoneId} endpoint where the Asset Type ID is Blyott internal identifier.

Curl Example:

Curl

'https://api.blyott.com/zone/2' \

-X 'DELETE' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token}' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/' \

-H 'accept-language: en-US,en;q=0.9' \

API Documentation

 53

8.5. SEARCH ZONES (POST /zones)

To search for specific Zone a POST request to the /zones endpoint should be issued with
following Filtering properties in the JSON body payload:

13. Page - Since results are paginated by 20 items, the page of the required result
set should be provided. If field is not provided all results will be returned.
14. SortBy - By which Locator property should the results be sorted.
15. PageSize - If there are more than 20 results, specify this filter value.

a. if not specified, number of items per page is 20.
b. if number is less than 20, it is interpreted as 20.
c. if number is greater than 1000, it is interpreted as 1000.

16. GlobalSearch - Searches the content in almost all grid columns.
17. SortOrder - Sorting direction can be:

a. Asc - Ascending order.
b. Desc - Descending order.

18. Filters - Arrays of applied filter, contains the list of following elements:
a. FilterBy - Property by which to filter on.
b. FilterContent - Array of values to search the value requested property
against based on the contains type of logic.

Possible Filter properties:

1. Name - filter by name of the Zone.

Curl Example:

Curl

'https://api.blyott.com/zones' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token}' \

-H 'content-type: application/json' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/' \

-H 'accept-language: en-US,en;q=0.9' \

https://portal.blyott.com/
https://portal.blyott.com/

API Documentation

 54

--data-binary

'{"Page":1,"PageSize":50,"GlobalSearch":"","SortBy":"Name","SortOrder":"Asc","Filters":

[{"FilterBy":

"Name","FilterName":"Zone","FilterContent":["DERM"]}]}' \

API Documentation

 55

8.6. LIST ALL ZONES (GET /allZones)

Issuing a GET request to /allZones will retrieve a list of all existing Zone values and their
associated entries.

Curl Example:

Curl

 'https://api.blyott.com/allZones' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token}' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/' \

-H 'accept-language: en-US,en;q=0.9' \

API Documentation

 56

9. USER SPECIFIC OPERATIONS:

9.1. CREATE USER (POST /user)

User is created by issuing a POST request to the platform against the

/user endpoint with a body of JSON payload consisting of the following parameters:

1. FirstName - user’s first name. 2. Last name - user’s last name.

3. username - uniquely identifies user, required for users to login.
4. email - user’s email address.
5. role - defines access control, can be one of the following:

a. Administrator
b. User

6. totalAccess - if true, the user can access all current levels and the ones that will
be added in the future.
7. accessLevels - if Total Access parameter is false (limited access), this one
needs to be specified and it should exist in AccessLevel list (see Access
Levels/Permissions).

Curl Example:

Curl

'https://api.blyott.com/user' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token}' \

-H 'content-type: application/json' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/' \

-H 'accept-language: en-US,en;q=0.9' \

--data-binary

'{"FirstName":"Test","LastName":"Test","username":"test123","email":"test@test.com","rol

e":"Ad ministrator","totalAccess":true,"accessLevels":null}' \

API Documentation

 57

9.2. GET USER DETAILS (GET /user/{UserID})

User details can be easily retrieved by issuing a GET request against the

/user/{UserID} endpoint where the userID is an internal identifier.

Curl Example:

Curl

'https://api.blyott.com/user/test123' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token}' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/' \

-H 'accept-language: en-US,en;q=0.9' \

API Documentation

 58

9.3. EDIT USER (PUT /user)

User is edited by issuing a PUT request to the platform against the

/user endpoint with a body of JSON payload consisting of the following parameters:

1. FirstName - user’s first name.
2. Last name - user’s last name.
3. username - uniquely identifies user, required for users to login.
4. email - user’s email address.
5. role - defines access control, can be one of the following:

a. Administrator
b. User

6. totalAccess - if true, the user can access all current levels and the ones that will
be added in the future.
7. accessLevels - if Total Access parameter is false (limited access), this one
needs to be specified and it should exist in AccessLevel list (see Access
Levels/Permissions).

Curl Example:

Curl

'https://api.blyott.com/user' \

-X 'PUT' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token}' \

-H 'content-type: application/json' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/' \

-H 'accept-language: en-US,en;q=0.9' \

--data-binary

'{"FirstName":"Test","LastName":"Test","Username":"test123","Email":"test@test.com","Ro

le":"A dministrator","AccessLevels":null,"TotalAccess":true}' \

API Documentation

 59

9.4. DELETE USER (DELETE /user/{UserID})

User can be easily removed from the system by issuing a DELETE request against the

/user/{UserId} endpoint where the User ID is Blyott internal identifier.

Curl Example:

Curl

'https://api.blyott.com/user/test123' \

-X 'DELETE' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token}' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/' \

-H 'accept-language: en-US,en;q=0.9' \

API Documentation

 60

9.5. SEARCH USERS (POST /users)

To search for specific User a POST request to the /users endpoint should be issued with
following Filtering properties in the JSON body payload:

1. Page - Since results are paginated by 20 items, the page of the required result
set should be provided. If field is not provided all results will be returned.
2. SortBy - By which Locator property should the results be sorted.
3. PageSize - If there are more than 20 results, specify this filter value.

a. if not specified, number of items per page is 20.
b. if number is less than 20, it is interpreted as 20.
c. if number is greater than 1000, it is interpreted as 1000.

4. GlobalSearch - Searches the content in almost all grid columns.
5. SortOrder - Sorting direction can be:

a. Asc - Ascending order.
b. Desc - Descending order.

6. Filters - Arrays of applied filter, contains the list of following elements:
a. FilterBy - Property by which to filter on.
b. FilterContent - Array of values to search the value requested property
against based on the contains type of logic.

Possible Filter properties:

1. FirstName - filter by First Name.
2. LastName - filter by Last Name.
3. Username - filter by Username.
4. Email - filter by Email.
5. Role - filter by Role.
6. AccessLevel - filter by Access Level (see Access Levels/Permissions).

Curl Example:

Curl

'https://api.blyott.com/users' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token} \

-H 'content-type: application/json' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

API Documentation

 61

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/' \

-H 'accept-language: en-US,en;q=0.9' \

--data-binary

'{"Page":1,"PageSize":50,"GlobalSearch":"test","SortBy":"FirstName","SortOrder":"Asc","Filt

ers":[

{"FilterBy":"FirstName","FilterName":"First

Name","FilterContent":[""]},{"FilterBy":"LastName","FilterName":"Last

Name","FilterContent":[""]},{"FilterBy":"Username","FilterName":"Username","FilterContent

":[""]},

{"FilterBy":"Email","FilterName":"Email","FilterContent":[""]},{"FilterBy":"Role","FilterName"

:"Role"

,"FilterContent":[""]},{"FilterBy":"AccessLevel","FilterName":"Access

Levels","FilterContent":[""]}]}' \

API Documentation

 62

9.6. RESEND INVITE (POST /user/{UserID}/resendInvitation)

Resend invitation can be easily triggered by issuing a PUT request against the

/user/{UserID}}/resendInvitation endpoint where the userID is an internal identifier.

Curl Example:

Curl

'https://api.blyott.com/user/{UserID}/resendInvitation' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token} \

-H 'content-type: application/json' \ -H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/' \

-H 'accept-language: en-US,en;q=0.9' \

API Documentation

 63

10. LAYOUT BUILDER OPERATIONS:

In order to add customized information for each entity (Tag, Asset, Locator and Location),
dynamic properties are implemented.

10.1. CREATE DYNAMIC PROPERTY (POST /layoutBuilder/{entityName})

Dynamic property is created by issuing a POST request to the platform against the
/layoutBuilder/{entityName} endpoint where Entity Name is name of one of the following
items:

● tag
● locator
● asset
● location

A body of JSON payload consists of the parameter:

1. Name - name of the Dynamic Property.

Curl Example:

Curl

'https://api.blyott.com/layoutBuilder/asset' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token} \

-H 'content-type: application/json' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/' \

-H 'accept-language: en-US,en;q=0.9' \

--data-binary '{"Name":"New dynamic property"}' \

API Documentation

 64

10.2. GET DYNAMIC PROPERTY (GET /layoutBuilder/{entityName})

Dynamic properties can be easily retrieved by issuing a GET request to the platform against
the /layoutBuilder/{entityName} endpoint where Entity Name is name of one of the
following items:

● tag
● locator
● asset
● location

Curl Example:

Curl

'https://api.blyott.com/layoutBuilder/asset' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token} \

-H 'content-type: application/json' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/' \

-H 'accept-language: en-US,en;q=0.9' \

API Documentation

 65

10.3. EDIT DYNAMIC PROPERTY (PUT /layoutBuilder/{entityName})

Dynamic property is edited by issuing a PUT request to the platform against the
/layoutBuilder/{entityName} endpoint where Entity Name is name of one of the following
items:

● tag
● locator
● asset
● location

A body of JSON payload consists of the following parameters:

1. Id - unique internal Blyott Dynamic Property identifier.
2. Name - name of the Dynamic Property.

Curl Example:

Curl

'https://api.blyott.com/layoutBuilder/asset' \

-X 'PUT' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token} \

-H 'content-type: application/json' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/' \

-H 'accept-language: en-US,en;q=0.9' \

--data-binary '{"Id":33,"Name":"New dynamic property"}' \

API Documentation

 66

10.4. ARCHIVE DYNAMIC PROPERTY (PUT /layoutBuilder/{entityName}/archive)

Dynamic property is archived by issuing a PUT request to the platform against the
/layoutBuilder/{entityName}/archive endpoint where Entity Name is name of one of the
following items:

● tag
● locator
● asset
● location

A body of JSON payload consists of the parameter:

1. CustomFieldIDs - unique internal Blyott Dynamic Property identifiers.

Curl Example:

Curl

'https://api.blyott.com/layoutBuilder/asset/archive' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token} \

-H 'content-type: application/json' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/' \

--data-binary '{"CustomFieldIds":[33]}' \

API Documentation

 67

10.5. RESTORE DYNAMIC PROPERTY (PUT

/layoutBuilder/{entityName}/restore)

Dynamic property is archived by issuing a PUT request to the platform against the

/layoutBuilder/{entityName}/restore endpoint where Entity Name is name of one of the
following items:

● tag
● locator
● asset
● location

A body of JSON payload consists of the parameter:

1. CustomFieldIDs - unique internal Blyott Dynamic Property identifiers

Curl Example:

Curl

'https://api.blyott.com/layoutBuilder/asset/restore \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token} \

-H 'content-type: application/json' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/' \

--data-binary '{"CustomFieldIds":[33,34]}' \

API Documentation

 68

10.6. DELETE DYNAMIC PROPERTY (PUT /layoutBuilder/{entityName})

Dynamic property is archived by issuing a PUT request to the platform against the
/layoutBuilder/{entityName}/restore endpoint where Entity Name is name of one of the
following items:

● tag
● locator
● asset
● location

A body of JSON payload consists of the parameter:

1. CustomFieldIDs - unique internal Blyott Dynamic Property identifiers.

Curl Example:

Curl

'https://api.blyott.com/layoutBuilder/asset/delete' \

-X 'PUT' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token}' \

-H 'content-type: application/json' \ -H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/' \

-H 'accept-language: en-US,en;q=0.9' \

--data-binary '{"CustomFieldIds":[17,20]}' \

API Documentation

 69

11. ADDITIONAL INFORMATION:

11.1. LIST OF TAG HARDWARE MODELS (GET /hardware/0)

Issuing a GET request to /hardware/0 will retrieve a list of all possible HardwareModel
values and their associated HardwareId entries that can be used to create/edit a Tag.

11.2. LIST OF LOCATOR HARDWARE MODELS (GET /hardware/1)

Issuing a GET request to /hardware/1 will retrieve a list of all possible HardwareModel
values and their associated HardwareId entries that can be used to create/edit a Locator.

11.3. ACTIVITY VALUES

Values returned when searching and filtering for Assets/Tags/Locators can be any of the

following values:

● 1 - seen 5 min ago & moving.
● 2 - seen 5 min ago.
● 3 - seen somewhere between 5 min to 2 hours ago.
● 4 - seen more than 2 hours ago. ● 5 - never seen.

API Documentation

 70

12. COMMON USAGE SCENARIOS:

12.1. LINK TAG SCENARIOS:

Link unassigned Asset to unassigned Tag

1. Retrieve the list of all unassigned Assets.
2. Edit a Tag’s AssetId field to one of the AssetId from the list of unassigned Tags
in previous step.

Link unassigned Tag to a new Asset

1. Retrieve the list of all unassigned Tags.
2. Create a new Asset and set Asset’s TagId field to one of the Tag Ids from the list of
unassigned Tags in previous step.

Link new Asset to a new Tag

1. Create a new Tag and set AssetId field as null, thus creating a new unassigned
Tag.
2. Create a new Asset and set Asset’s TagId field to a Tag set in previous steps.

API Documentation

 71

12.2. UNLINK TAG SCENARIOS:

Unlink Asset from Tag

1. Edit a Tag and set AssetId to null, thus creating an unassigned Tag.

Unlink Tag from Asset

Edit an Asset and set TagId to null, thus creating an unassigned Asset.

12.3. VIEW ASSETS’S LOCATION

Issue a Search Assets call and set filtering property of AssetCode to desired value. Result
will display Asset’s current LocationName and LocationCode (implying Asset was assigned to
a Tag and was seen by a Locator).

API Documentation

 72

13. FINGERPRINTING:

13.1. START FINGERPRINTING (POST /startFingerprinting)

Fingerprinting is started by issuing a POST request to the platform against the
/startFingerprinting endpoint with a body of JSON payload consisting of the following
parameters:

1. TagId - BLE MAC address of the Tag.
2. LocationId - value should be the set to the internal Id of the Location (see
Locations).
3. HardwareId - Tag’s Manufacturer and model information, should be set to Id of
the HardwareModel (see Hardware).

After the request is sent, Tag Type is set to ‘Machine Learning’ to avoid the possibility of
user error. It is not possible to start fingerprinting for Tag which is already in the system. In
that case, Tag needs to be deleted and added again using this endpoint.

Example:

{

"TagId": "60C0BF209622",

"LocationId": 11,

"HardwareId": 1

}

13.2. END FINGERPRINTING (POST /endFingerprinting)

Fingerprinting is stopped and removed from the system by issuing a POST request to the
platform against the /endFingerprinting endpoint with a body of JSON payload consisting of
only one parameter:

API Documentation

 73

1. TagId - BLE MAC address of the Tag

Example:

{

"TagId": "60C0BF209622"

}

13.3. CREATE FINGERPRINT (POST /fingerprint)

Fingerprint is created by issuing a POST request to the platform against the /fingerprint
endpoint with a body of JSON payload consisting of at least the following parameters:

1. TagId
2. LocationCode
3. Timestamp

Curl Example:

Curl

'https://api.blyott.com/fingerprint \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token}' \

-H 'content-type: application/json' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/' \ -H 'accept-language: en-US,en;q=0.9' \

--data-raw '{"TagId":"60C0BF208422", "LocationCode":"CE",

"Timestamp":"1642273637995"}' \

API Documentation

 74

13.4. STATUS OF FINGERPRINTING TAGS (GET /fingerprintings)

Fingerprinting status (list of all tags that are currently fingerprinting) can be easily retrieved
by issuing a GET request to the platform against the /fingerprintings endpoint.

For each tag that is actively fingerprinting following data will be returned:

● Tag Id
● Location Id
● Hardware Id
● Start
● End
● Fingerprinting Duration (calculates the duration between Start and the current
timestamp)
● Received Broadcasts (number of broadcasts during the fingerprinting session)

Example:

{

"TagId": "60C0BF209622",

"LocationId": 11,

"HardwareId": 1,

"Start": "2020-10-23T12:18:17",

"End": null,

"FingerprintingDuration": "00:01:08.1382882",

"ReceivedBroadcasts": 13345

}

API Documentation

 75

13.5. LIST OF FINGERPRINTING SESSIONS PER LOCATION

(GET/fingerprintings/{LocationID})

List of fingerprinting sessions per location (list of all tags that were fingerprinting in the past
and are now) can be easily retrieved by issuing a GET request to the platform against the
/fingerprintings/{LocationId} endpoint, where the LocationID is Location’s Blyott internal
identifier (see Locations).

For each tag following data will be returned:

● Tag Id
● Hardware Id
● Start
● End
● Received Broadcasts (number of broadcasts during the fingerprinting session)

Example:

{

"TagId": "60C0BF209622",

"HardwareId": 1,

"Start": "2020-10-22T13:03:58",

"End": "2020-10-23T12:17:44",

"ReceivedBroadcasts": 12730

},

{

"TagId": "60C0BF209623",

"HardwareId": 1,

"Start": "2020-10-23T12:18:17",

"End": null,

"ReceivedBroadcasts": 15

}

API Documentation

 76

13.6. DELETE FINGERPRINTINGS FROM LOCATION (POST

/deleteFingerprintings)

Fingerprintings are deleted from a location by issuing a POST request to the platform
against the /deleteFingerprintings endpoint with a body of JSON payload consisting of only
one parameter.

Parameter:

1. LocationId - Internal Blyott Location identifier

Example:

API Documentation

 77

14. WORKFLOW SPECIFIC OPERATIONS:

14.1. CREATE WORKFLOW (POST /addWorkflow)

Workflow is created by issuing a POST request to the platform against the /addWorkflow
endpoint with a body of JSON payload consisting of at least the following parameters:

1. Name - Name of the Workflow.
2. URL - URL where information will be forwarded to.
3. AuthenticationType - the authentication type specifies the security protocol.
Currently, only 0 (secret) is possible.
4. Secret - used for accessing the URL.
5. ForwardType - defines when the trigger will be triggered:

• 0 - instantly
• 1 - every x Seconds
• 2 - on location changed
• 3 - alert offline
• 4 - button pressed
• 5 - movement detected
• 6 - outside asset zone
• 7 - floor changed
• 8 - zone changed
• 9 – inside specific zone
• 10 – outside specific zone

6. ForwardEvery – Based on the ForwardType this filed should be populated
accordingly:

• ForwardType: 0 - Field is not applicable
• ForwardType: 1 - populate with the number of seconds that determines
how often this workflow should be triggered (value should be larger than 1).
This field is mandatory.
• ForwardType: 2 – a payload whenever the location is changed from the

LocationOfInterest. field is not mandatory.

• ForwardType: 3 - populate with the number of seconds that determines
how long should the Asset be offline before the Alert is sent. This is also the
frequency of how often the Alert will be sent while the Asset is offline (value
should be larger than 1). This field is mandatory.
• ForwardType: 4 - payload whenever the Asset/Tag button has been
pressed. This field is mandatory.
• ForwardType: 5 - payload whenever Asset has been moved. This field is
mandatory.

API Documentation

 78

• ForwardType: 6 - payload whenever Asset has been moved outside
designated Zone. This field is mandatory.
• ForwardType: 7 - payload whenever Asset has been moved to a
different Floor - FloorOfInterest. Not applicable.
• ForwardType: 8 - payload whenever the zone is changed from the
FloorOfInterest. Not applicable.
• ForwardType: 9 – payload whenever Asset moves to specified zone.
This filed is mandatory.
• ForwardType: 10 – payload whenever Asset moves out of specified
zone. This filed is mandatory.

7. FloorOfInterest –Applicable on ForwardType: 7
8. ZoneOfInterestId –Applicable on ForwardType: 8
9. LocationOfInterest –Applicable on ForwardType: 2
10. IsActive - false/true, defines is workflow currently active or not.

Curl Example:

Curl

'https://api.blyott.com/addWorkflow' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token}' \

-H 'content-type: application/json' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/' \

-H 'accept-language: en-US,en;q=0.9' \

--data-binary $'{"Name":"Workflow

1","URL":"https://test.com","AuthenticationType":0,"Secret":"Test123\u0021","ForwardTyp

e":1,"

F orwardEvery":160,"IsActive":true}' \

API Documentation

 79

14.2. GET WORKFLOW DETAILS (GET /workflow/{WorkflowID})

Workflow details can be easily retrieved by issuing a GET request against the

/workflow/{WorkflowID} endpoint where the WorkflowID is Workflow Blyott internal
identifier.

Curl Example:

Curl

'https://api.blyott.com/workflow/4' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token}'' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/' \

-H 'accept-language: en-US,en;q=0.9' \

API Documentation

 80

14.3. EDIT WORKFLOW (PUT /editWorkflow)

Workflow properties can be edited by issuing a PUT request against the /editWorkflow
endpoint with the body consisting of with a body of JSON payload consisting of at least the
following parameters:

1. Name - Name of the Workflow.
2. URL - URL where information will be forwarded to.
3. AuthenticationType - the authentication type specifies the security protocol.
Currently, only 0 (secret) is possible.
4. Secret - used for accessing the URL.
5. ForwardType - defines when the trigger will be triggered:

• 0 - instantly
• 1 - every x Seconds
• 2 - on location changed
• 3 - alert offline
• 4 - button pressed
• 5 - movement detected
• 6 - outside asset zone
• 7 - floor changed
• 8 - zone changed
• 9 – inside specific zone
• 10 – outside specific zone

6. ForwardEvery – Based on the ForwardType this filed should be populated
accordingly:

• ForwardType: 0 - Field is not applicable
• ForwardType: 1 - populate with the number of seconds that determines
how often this workflow should be triggered (value should be larger than 1).
This field is mandatory.
• ForwardType: 2 – a payload whenever the location is changed from the
LocationOfInterest. field is not mandatory.
• ForwardType: 3 - populate with the number of seconds that determines
how long should the Asset be offline before the Alert is sent. This is also the
frequency of how often the Alert will be sent while the Asset is offline (value
should be larger than 1). This field is mandatory.
• ForwardType: 4 - payload whenever the Asset/Tag button has been
pressed. This field is mandatory.
• ForwardType: 5 - payload whenever Asset has been moved. This field is
mandatory.
• ForwardType: 6 - payload whenever Asset has been moved outside
designated asset Zone. This field is mandatory.

API Documentation

 81

• ForwardType: 7 - payload whenever Asset has been moved to a
different Floor - FloorOfInterest. Not applicable.
• ForwardType: 8 - payload whenever the zone is changed from the
ZoneOfInterest. Not applicable.
• ForwardType: 9 – payload whenever Asset moves to specified zone.
This filed is mandatory.
• ForwardType: 10 – payload whenever Asset moves out of specified
zone. This filed is mandatory.

1. FloorOfInterest –Applicable on ForwardType: 7
2. ZoneOfInterestId –Applicable on ForwardType: 8
3. LocationOfInterest –Applicable on ForwardType: 2
4. IncludePayload – Include payload flag (true/false)
5. IsActive - false/true, defines is workflow currently active or not.

Curl Example:

Curl

"https://api.blyott.com/editWorkflow" ^

-X "PUT" ^

-H "authority: api.blyott.com" ^

-H "accept: application/json, text/plain, */*" ^

-H "token: {token}" ^

-H "content-type: application/json" ^

-H "origin: https://portal.blyott.com" ^

-H "sec-fetch-site: same-site" ^

-H "sec-fetch-mode: cors" ^

-H "sec-fetch-dest: empty" ^

-H "referer: https://portal.blyott.com/" ^

-H "accept-language: en-US,en;q=0.9" ^

--data-binary $'{"Id":4,"Name":"Workflow

2","URL":"https://test.com","AuthenticationType":0,"Secret":"Test123\u0021","ForwardTyp

e":1,"

ForwardEvery":180,"IsActive":true}' \

API Documentation

 82

14.4. SEARCH WORKFLOW (POST /workflows)

To search for specific Workflow POST request to the /workflows endpoint should be issued
with following Filtering properties in the JSON body payload:

1. Page - Since results are paginated by 20 items, the page of the required
result set should be provided. If the field is not provided all results will be
returned.
2. SortBy - By which Workflow property should the results be sorted.
3. PageSize - If there are more than 20 results, specify this filter value.

d. if not specified, number of items per page is 20.
e. if number is less than 20, it is interpreted as 20.
f. if number is greater than 1000, it is interpreted as 1000.

4. GlobalSearch - Searches the content in almost all grid columns.
5. SortOrder - Sorting direction can be:

a. Asc - Ascending order.
b. Desc - Descending order.

6. Filters - Arrays of applied filter, contains the list of following elements:

a. FilterBy - Property by which to filter on.
b. FilterContent - Array of values to search the value requested
property against based on the contains type of logic.

Possible Filter properties:

1. Name - filter by Workflow Name.
2. URL - filter by URL.
3. AuthenticationType - filter by Authentication Type.
4. Secret - filter by secret.
5. ForwardType - filter by Forward Type.
6. ForwardEvery - filter by Forward Every.
7. IsActive - filter by Is Active (false/true).

API Documentation

 83

Curl Example:

Curl

'https://api.blyott.com/workflows' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token}' \

-H 'content-type: application/json' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/' \

-H 'accept-language: en-US,en;q=0.9' \

--data-binary

'{"Page":1,"PageSize":25,"GlobalSearch":"","SortBy":"Name","SortOrder":"Asc","Filters":[{"

FilterB

y":"Name","FilterName":"Workflow","FilterContent":["W"]},{"FilterBy":"URL","FilterName":"

URL","

FilterContent":["https"]},{"FilterBy":"AuthenticationMethod","FilterName":"Authentication

Method","FilterContent":["Secret"]},{"FilterBy":"Secret","FilterName":"Secret","FilterConten

t":["T

est"]},{"FilterBy":"ForwardInfo","FilterName":"ForwardInfo","FilterContent":["Every"]},{"Fil

terBy":" Active","FilterName":"Active","FilterContent":["Yes"]}]}' \

API Documentation

 84

15. USER PROFILE SPECIFIC OPERATIONS:

15.1. CREATE USER PROFILE (POST /userProfile)

User profile is created by issuing a POST request to the platform against the /userProfile
endpoint with a body of JSON payload consisting of at least the following parameters:

1. SavedSearchData – User saved searches data

Curl Example:

Curl

'https://api.blyott.com/userProfile' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token}' \

-H 'content-type: application/json' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/' \

-H 'accept-language: en-US,en;q=0.9' \

--data-raw '{"SavedSearchData":"{}"}' \

API Documentation

 85

15.2. GET USER PROFILE (GET /UserProfile)

User profile details can be easily retrieved by issuing a GET request against the

/userProfile.

Curl Example:

Curl

'https://api.blyott.com/userProfile' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token}' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/' \

-H 'accept-language: en-US,en;q=0.9' \

API Documentation

 86

15.3. EDIT USER PROFILE (PUT /UserProfile)

User profile is edited by issuing a PUT request to the platform against the /userProfile
endpoint with a body of JSON payload consisting of at least the following parameters:

1. SavedSearchData – User saved searches data

Curl Example:

Curl

'https://api.blyott.com/userProfile\

-X 'PUT' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token}' \

-H 'content-type: application/json' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/' \

-H 'accept-language: en-US,en;q=0.9' \

--data-raw '{"SavedSearchData":"{}"}' \

API Documentation

 87

15.4. DELETE USER PROFILE (DELETE /UseRProfile)

User profile can be easily removed from the system by issuing a DELETE request against the
/userProfile endpoint.

Curl Example:

Curl

'https://api.blyott.com/userProfile' \

-X 'DELETE' \

-H 'authority: api.blyott.com' \

-H 'accept: application/json, text/plain, */*' \

-H 'token: {token}' \

-H 'origin: https://portal.blyott.com' \

-H 'sec-fetch-site: same-site' \

-H 'sec-fetch-mode: cors' \

-H 'sec-fetch-dest: empty' \

-H 'referer: https://portal.blyott.com/' \

-H 'accept-language: en-US,en;q=0.9' \

